Pareto-optimality of oblique decision trees from evolutionary algorithms
نویسندگان
چکیده
This paper investigates the performance of evolutionary algorithms in the optimization aspects of oblique decision tree construction and describes their performance with respect to classification accuracy, tree size, and Pareto-optimality of their solution sets. The performance of the evolutionary algorithms is analyzed and compared to the performance of exhaustive (traditional) decision tree classifiers on several benchmark datasets. The results show that the classification accuracy and tree sizes generated by the evolutionary algorithms are comparable with the results generated by traditional methods in all the sample datasets and in the large datasets, the multiobjective evolutionary algorithms generate better Paretooptimal sets than the sets generated by the exhaustive methods. The results also show that a classifier, whether exhaustive or evolutionary, that generates the most accurate trees does not necessarily generate the shortest trees or the best Pareto-optimal sets.
منابع مشابه
Combining Evolutionary Algorithms With Oblique Decision Trees to Detect Bent-Double Galaxies
متن کامل
Approximate Pareto Optimal Solutions of Multi objective Optimal Control Problems by Evolutionary Algorithms
In this paper an approach based on evolutionary algorithms to find Pareto optimal pair of state and control for multi-objective optimal control problems (MOOCP)'s is introduced. In this approach, first a discretized form of the time-control space is considered and then, a piecewise linear control and a piecewise linear trajectory are obtained from the discretized time-control space using ...
متن کاملInducing oblique decision trees with evolutionary algorithms
This paper illustrates the application of evolutionary algorithms (EAs) to the problem of oblique decision-tree (DT) induction. The objectives are to demonstrate that EAs can find classifiers whose accuracy is competitive with other oblique tree construction methods, and that, at least in some cases, this can be accomplished in a shorter time. We performed experiments with a (1+1) evolution str...
متن کاملSolution of Multi-Objective optimal reactive power dispatch using pareto optimality particle swarm optimization method
For multi-objective optimal reactive power dispatch (MORPD), a new approach is proposed where simultaneous minimization of the active power transmission loss, the bus voltage deviation and the voltage stability index of a power system are achieved. Optimal settings of continuous and discrete control variables (e.g. generator voltages, tap positions of tap changing transformers and the number of...
متن کاملPERFORMANCE-BASED MULTI-OBJECTIVE OPTIMUM DESIGN FOR STEEL STRUCTURES WITH INTELLIGENCE ALGORITHMS
A multi-objective heuristic particle swarm optimiser (MOHPSO) based on Pareto multi-objective theory is proposed to solve multi-objective optimality problems. The optimality objectives are the roof displacement and structure weight. Two types of structure are analysed in this paper, a truss structure and a framework structure. Performance-based seismic analysis, such as classical and modal push...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Global Optimization
دوره 51 شماره
صفحات -
تاریخ انتشار 2011